4.1 MATERIALS AND METALLURGY

L T P 3 - 2

RATIONALE

Lot of developments have taken place in the field of materials. New materials are being developed and it has become possible to change the properties of materials to suit the requirements. Diploma holders in this course are required to make use of different materials for various applications. For this purpose, it is necessary to teach them basics of metal structure, properties, usage and testing of various ferrous and non ferrous materials and various heat treatment processes. This subject aims at developing knowledge about the characteristics, testing and usage of various types of materials used in industries.

DETAILED CONTENTS

1. Introduction

Material, History of Material Origin, Scope of Material Science, Overview of different engineering materials and applications, Classification of materials, Thermal, Chemical, Electrical, Mechanical properties of various materials, Present and future needs of materials, Overview of Biomaterials and semiconducting materials, Various issues of Material Usage-Economical, Environment and Social.

2. Crystallography

Fundamentals: Crystal, Unit Cell, Space Lattice, Arrangement of atoms in Simple Cubic Crystals, BCC, FCC and HCP Crystals, Number of atoms per unit Cell, Atomic Packing Factor.

Deformation: Overview of deformation behaviour and its mechanisms, behaviour of material under load and stress-strain.

Failure Mechanisms: Overview of failure modes, fracture, fatigue and creep.

3. Metals And Alloys

Introduction: History and development of iron and steel, Different iron ores, Raw Materials in Production of Iron and Steel, Basic Process of iron-making and steel-making, Classification of iron and steel,

Cast Iron: Different types of Cast Iron, manufacture and their usage.

Steels: Steels and alloy steel, Classification of plain carbon steels, Availability, Properties and usage of different types of Plain Carbon Steels, Effect of various alloys on properties of steel, Uses of alloy steels (high speed steel, stainless steel, spring steel, silicon steel)

(07 hrs)

(14 hrs)

(07 hrs)

Non Ferrous Materials: Properties and uses of Light Metals and their alloys, properties and uses of White Metals and their alloys.

4. Theory of Heat Treatment

Purpose of heat treatment, Solid solutions and its types, Iron Carbon diagram, Formation and decomposition of Austenite, Martensitic Transformation – Simplified Transformation Cooling Curves various heat treatment processeshardening, tempering, annealing, normalizing, Case hardening and surface hardening, Types of heat treatment furnaces required for above operations (only basic idea)

5. Engineering Plastics (03 hrs)

Important sources of plastics, Classification-thermoplastic and thermo set and their uses, Various Trade names of engg. Plastics, Plastic Coatings.

6. Advanced Materials (03 hrs)

Composites-Classification, properties, applications Ceramics-Classification, properties, applications Heat insulating materials

7. Miscellaneous Materials (06 hrs)

Properties and uses of Asbestos, Glass wool, thermocole, cork, mica. Overview of tool and die materials, Materials for bearing metals, Spring materials, Materials for Nuclear Energy, Refractory materials.

LIST OF PRACTICALS

- 1. Classification of about 25 specimens of materials/machine parts into
 - (i) Metals and non metals
 - (ii) Metals and alloys
 - (iii) Ferrous and non ferrous metals
 - (iv) Ferrous and non ferrous alloys
- 2. Given a set of specimen of metals and alloys (copper, brass, aluminium, cast iron, HSS, Gun metal); identify and indicate the various properties possessed by them.
- 3. Study of heat treatment furnace.
- 4. Study of a metallurgical microscope and a specimen polishing machine.
- 5. To prepare specimens of following materials for microscopic examination and to Examine the microstructure of the specimens of following materials:
 i) Brass ii)Copper iii)Grey iv)Malleable v)Low carbon steel vi)High carbon steel vii) HSS
- 6. To anneal a given specimen and find out difference in hardness as a result of annealing.
- 7. To normalize a given specimen and to find out the difference in hardness as a result of normalizing.
- 8. To harden and temper a specimen and to find out the difference in hardness due to tempering.

(08 hrs)

INSTRUCTIONAL STRATEGY

While imparting instructions, teacher should show various types of engineering materials to the students. Students should be asked to collect samples of various materials available in the market. Visits to industry should be planned to demonstrate use of various types of materials or Heat Treatment Processes in the industry.

RECOMMENDED BOOKS

- 1. Text book of Material Science by R.K. Rajput; Katson Pubs, Ludhiana
- 2. Text book of Material Science by Varinder Kumar, Eagle Publisher, Jalandhar
- 3. Text book of Material Science by V.K. Manchanda; India Publishing House, Jalandhar.
- 4. Engg. Metallurgy by R.A. Higgens, Standard Publishers, New Delhi
- 5. Introduction to Material Science by A.R. Gupta, Satya Prakashan, New Delhi.

Topic No.	Time Allotted (Hrs)	Marks Allotted (%)
1.	07	15
2.	07	15
3.	14	30
4.	08	16
5.	03	06
6.	03	06
7.	06	12
Total	48	100

SUGGESTED DISTRIBUTION OF MARKS

84

4.2 HYDRAULIC AND PNEUMATIC SYSTEMS

RATIONALE

The subject deals with basic concepts of hydraulic and pneumatics which are required by students for automation purpose. This subject enhances the knowledge and skills of students in the area of hydraulics and pneumatics.

DETAILED CONTENTS

1. Introduction

Need, scope and importance of hydraulic and pneumatic, Hydrostatic and hydrodynamic definitions, properties of fluid, Pascal's law, Continuity equation and Bernoulli's equation. Advantages and limitations of hydraulic and pneumatic systems

- 2. Hydraulic Elements
 - Hydraulic Pipes- Type, materials, designations, pressure ratings and selection criteria. Piping Layout, Concept, rules/norms.
 - Hydraulic Pump- Type, construction, working applications and selection criteria. Powerpack
 - Control Valves- Type, designation, symbols, working and applications.
 - Hydraulic Actuators- Type, working and applications.
 - Other Elements such as filters, manifold, receivers, coolers and connecters.
- 3. **Fundamentals of Pneumatics**

Compressible fluid flow, mass flow rate, compressible fluid- Type, properties and applications.

- 4. Pneumatic Elements
 - Pipes- Type, designations, applications and properties. •
 - Air Compressor- Type (Reciprocating and rotary), working and selection • criteria.
 - Pneumatic Cylinders- Type, symbol, cushion, assemblies, mounting and • installation.
 - Air Motors- Type, working and applications.
 - Pneumatic Valves- Type, symbols, working, applications and selection criteria.
 - Other Elements Air receivers, filters, pressure regulator, lubricator.

LTP 4 - 2

(8 hrs.)

(20 hrs)

(6 hrs)

(20 hrs)

5. Hydraulic and Pneumatic Circuits

- Concept, Meaning and ISO symbols, Basic hydraulic and pneumatic circuits- Type, circuit diagrams.
- Rules/ Norms for designing hydraulic and pneumatic circuits.

LIST OF PRACTICALS

- 1. Study and demonstration of various hydraulic devices/elements.
- 2. Study and demonstration of various pneumatic devices/elements.
- 3. Operate hydraulic circuits based on simple system requirement. (at least 3)
- 4. Operate, pneumatic circuit based on simple systems requirements (at least 3)
- 5. Visit to a related industry.

INSTRUCTIONAL SRATEGY

- 1. Teacher should lay emphasis in making the students conversant with concepts and principles of hydraulic and pneumatic systems.
- 2. Various hydraulic and pneumatic elements should be demonstrated during teaching.

LIST OF RECOMMENDED BOOKS

- 1. Hydraulics and Pneumatics (A Technician and Engineer Guide) by Andrew Parr; Butterworth Publishers.
- 2. Hydraulic and Pneumatic Systems by S. R Majumdar; TMH Publishers.
- 3. Mechatronics by W. Bolton; Pearson.
- 4. Hydraulic and Hydraulic Machines by R. K. Bansal
- 5. Industrial Pneumatic control by Z. J Lansky; Marcel Dekker, Inc.
- 6. Hydraulic and Pneumatic Power and control Design, Performance and Application by Yeaple; McGraw hill.
- 7. Pneumatic Controls: An Introduction to the Principles by Werner Deppert and Kurt Stoll; Vogel- Verlag

Topic No.	Time Allotted (hrs.)	Marks Allotted(%)
1	8	15
2	20	30
3	6	10
4	20	30
5	10	15
Total	64	100

SUGGESTED DISTRIBUTION OF MARKS

4.3 JIGS, FIXTURES AND GAUGES-DESIGN AND DRAWING

RATIONALE

Knowledge regarding design & drawing of jigs, fixtures and gauges is essential as fixtures help to achieve mass production of components/parts at relatively low cost. The subject enables the students to know about the practices being adopted for design of jigs, fixtures & gauges.

DETAILED CONTENTS

Section A

1. Jigs and Fixtures

Concept of jigs & fixtures, need and advantages, concept of interchangeability, classification of jigs & fixtures.

2. Location and Clamping Devices

Basic principles of location, 3-2-1 principle of location, location for various services, location methods and devices. Concept of clamping and various clamping devices.

3. Drilling Jigs

Definition of drilling jig. Drilling jig, Drilling bushes & their function. Types of drilling jigs such as box type, channel jig, latch jig, indexing jig.

4. Fixtures

Introduction to fixtures, types of fixtures such as milling fixture (single piece, gang milling) lathe and boring fixtures, grinding and welding fixture. Application of pneumatic in jigs and fixtures.

5. Limit Gauges

Introduction to plain limit gauges, classification of limit gauges such as plug, ring & snap gauges. Brief description of thread gauges. Material selection. Taylor's principle of maximum & minimum material condition. Go and not-go ends of gauges and selection of gauge for inspection.

L T P 3 - 2

(5 hrs)

(7 hrs)

(10 hrs)

(12 hrs)

(14 hrs)

Section **B**

6.	Design and drawing of drilling jigs (at least 2 sheets)	(10 hrs)
7	Design and drawing of fixtures for milling (at least 2 sheets)	(10 hrs)

Design and drawing of fixtures for milling (at least 2 sheets)

8 Design and drawing of limit gauges such as plug gauge, ring gauge and snap gauge (at least 1 each). (12 hrs)

Note* The question paper on this subject will consist of two parts: Section A will contain theory part to the extent of 50%. Section B will contain design & drawing to the extent of 50%.

At least, 2 Industrial visits should be arranged in the related industry.

RECOMMENDED BOOKS

- 1. Prakash H Joshi, Press tools design & construction, Wheeler Publisher.
- 2. Donaldson, Fundamental of tool design.
- 3. Surrender Kr & Umesh Chandra, Production Engg. & Design, Satya Parkashan, New Delhi.
- 4. D. Engene Ostergard, Basic Die Making; Mc Graw Hill Book Co.
- 5. ASTME, "Fundamentals of Tool Design".
- 6. Handbook of Fixture Design, by Frank W. Wilson; McGraw Hill Book Company.

SUGGESTED DISTRIBUTION OF MARKS

Topic No.	Time Allotted(hrs)	Marks Allotted (%)
1	5	10
2	7	14
3	10	20
4	12	24
5	14	32
Total	48	100

(10 hrs)

4.4 **BASICS OF MECHANICAL ENGINEERING**

Rationale

This subject is introduced to enhance the basic concepts and principles of I. C. Engine & the concepts of basic machine elements like Fly wheel, Cam, Power Transmission elements etc., which are required by the students or further understanding of other subjects, the subject enhances the basic knowledge of students.

Detailed Contents

1.	Thermodynamics	(12 hrs))

- Introduction
- Laws of Thermodynamics
- Classification and working principle of I. C. engine. Otto cycle, Diesel cycle. Principle parts of I. C. engine and nomenclature of I. C. engine. Working of twostroke and four stroke engine C. I. engine and S. I. engine, Difference between C.I. and S.I. engines; two stroke and four stroke engines.

2.	Flywheel	(6 hrs)
	-	

Introduction, Function of flywheel, Type of flywheel. energy stored in flywheel, Co-efficient of energy and speed.

3. Cam & Followers

Introduction, Definition of cam & Followers Classification of cam & Followers.

4.	Power Transmission Devices	(8 hrs)
5.	 Introduction to belt drives and types of belt drives. Introduction to gear drives and types of gear drives. Comparison between belt drives and gear drives. Study of differential of automobile. Clutches 	(3 hrs)
6.	 Introduction Function and types of clutches Brakes 	(3 hrs)
7.	Vibration	(6 hrs)
	Introduction, its types, Possible causes, harmful effects and its	remedies.

L T P 3 - 2

(4 hrs)

8. Balancing

Need of balancing ,concept of static and dynamic Balancing.

LIST OF PRACTICALS

- 1. Study of two stroke and four stroke S. I. Engine with cut sections.
- 2. Study of two stroke and four stroke C. I. Engine with cut sections.
- 3. Study of flywheel.
- 4. Study of models of clutches :- single plate, multiplate, centrifugal.

RECOMMENDED BOOKS

- 1. Theory of Mechanism & Machine by A Ghosh and A. K. Malik; East West Press(Pvt.) Ltd. N. Delhi.
- 2. Theory of Machines by R.S. Khurmi ; S. Chand Publication.
- 3. I.C. Engines by R. C. Sharma & M.L. Mathur.
- 4. Thermodynamics by R. K. Rajput.

Topic No.	Allotted Time	Allotted Marks
1	12	24
2	6	12
3	4	8
4	8	20
5	3	6
6	3	6
7	6	12
8	6	12
Total	48	100

SUGGESTED MARKS DISTRIBUTION

4.5 WORKSHOP TECHNOLOGY-II

RATIONALE

Diploma holders are responsible for supervising production processes to achieve production targets and for optimal utilization of resources. For this purpose, knowledge about various machining processes, modern machining methods, processing of plastic, tools, jigs and fixtures and processing of plastics is required to be imparted. Hence the subject of workshop technology.

DETAILED CONTENTS

- 1. Cutting Tools and Cutting Materials
 - 1.1. Cutting Tools Various types of single point cutting tools and their uses, Single point cutting tool geometry, tool signature and its effect, Heat produced during cutting and its effect, Cutting speed, feed and depth of cut and their effect
 - 1.2 Cutting Tool Materials Properties of cutting tool material, Study of various cutting tool materials viz. High-speed steel, tungsten carbide, cobalt steel cemented carbides, stellite, ceramics and diamond.

2. Lathe

- 2.1 Principle of turning
- 2.2 Function of various parts of a lathe
- 2.3 Classification and specification of various types of lathe
- 2.4 Work holding devices
- 2.5 Lathe tools and operations :- Plain and step turning, facing, parting off, taper turning, eccentric turning, drilling, reaming, boring, threading and knurling, form turning, spinning.
- 2.6 Cutting parameters Speed, feed and depth of cut for various materials and for various operations, machining time.
- 2.7 Speed ratio, preferred numbers of speed selection.
- 2.8 Lathe accessories:- Centers, dogs, different types of chucks, collets, face plate, angle plate, mandrel, steady rest, follower rest, taper turning attachment, tool post grinder, milling attachment, Quick change device for tools.
- 2.9 Introduction to capstan and turret lathe

3. Drilling

- 3.1 Principle of drilling.
- 3.2 Classification of drilling machines and their description.
- 3.3 Various operation performed on drilling machine drilling, spot facing, reaming, boring, counter boring, counter sinking, hole milling, tapping.
- 3.4 Speeds and feeds during drilling, impact of these parameters on drilling, machining time.
- 3.5 Types of drills and their features, nomenclature of a drill
- 3.6 Drill holding devices.

(12 hrs)

(04 hrs)

(06 hrs)

L T P 3 - -

4.	Boring		(04 hrs)
	4.1 4.2 4.3	Principle of boring Classification of boring machines and their brief description. Boring tools, boring bars and boring heads.	
5.	Shapi	ng, Planing and Slotting	(04 hrs)
	5.1 5.2 5.3 5.4 5.5	Working principle of shaper, planer and slotter. Type of shapers Type of planers Types of tools used and their geometry. Speeds and feeds in above processes.	
6.	Broac	hing	(04 hrs)
	6.1 6.2 6.3	Introduction Types of broaching machines – Single ram and duplex ram horiz vertical type pull up, pull down, push down. Elements of broach tool, broach tooth details – nomenclature, tool material.	ontal type, types, and
7.	Jigs a	nd Fixtures	(06 hrs)
	7.1 7.2 7.3 7.4 7.5	Importance and use of jigs and fixture Principle of location Locating devices Clamping devices Advantages of jigs and fixtures	
8.	Cuttir	g Fluids and Lubricants	(08 hrs)
	8.1 8.2 8.3 8.4 8.5	Function of cutting fluid Types of cutting fluids Difference between cutting fluid and lubricant Selection of cutting fluids for different materials and operations Common methods of lubrication of machine tools.	

INSTRUCTIONAL STRATEGY

- 1. Teachers should lay emphasis in making students conversant with concepts and principles of manufacturing processes.
- 2. Focus should be on preparing jobs using various machines in the workshop

RECOMMENDED BOOKS

- 1. Workshop Technology by B.S. Raghuwanshi; Dhanpat Rai and Sons; Delhi
- 2. Elements of Workshop Technology by SK Choudhry and Hajra; Asia Publishing House
- A Text Book of Production Engineering by PC Sharma; S Chand and Company Ltd. Delhi
- 4. Workshop Technology by R.C. Jindal; North Publication, Ishan Publishers

Topic No.	Time Allotted (Hrs)	Marks Allotted (%)
1	04	8
2	12	26
3	06	14
4	04	8
5	04	8
6	04	8
7	06	12
8	08	16
Tot1al	48	100

SUGGESTED DISTRIBUTION OF MARKS

4.6 WORKSHOP PRACTICE – II

L T P - - 9

PRACTICAL EXERCISES

Turning Shop

- Job 1. Grinding of single point turning tool.
- Job 2. Exercise of simple turning and step turning.
- Job 3. A composite job involving, turning, taper turning, external thread cutting and knurling.

Advance Fitting Shop

- Job 1. Exercise on drilling, reaming, counter boring, counter sinking and taping
- Job 2. Dove tail fitting in mild steel
- Job 3. Radius fitting in mild steel
- Job 4. Pipe threading with die

Machine Shop

- Job 1. Prepare a V-Block up to ± 0.5 mm accuracy on shaper machine
- Job 2. Exercise on key way cutting and spline cutting on shaper machine.

4.7 COMPUTER AIDED DRAFTING

RATIONALE

Computer aided drafting these days is extensively being used in the industry. This subject has been added to enable a diploma holder to make drawings using computer software and take prints/plots.

PRACTICE WORK

- 1. Introduction to AutoCAD : Starting up, practice on how to create a new drawing file, setting drawing limits & saving a file, drawing lines in different ways using absolute co-ordinates, user co-ordinates, WCS, UCS, drawing circles, drawing arcs, drawing ellipses. Drawing polygons, drawings splines. Drawing polylines, using window, zoom commands.
- 2. Practice on Edit commands such as erase, copy, mirror, array, offset, rotate, oops, undo, redo, scale, stretch, trim, break, extend, chamfer, fillet, O snap command
- 3. Practice on Text commands: editing text, text size, text styles, change properties commands.
- 4. Practice on Layer Commands: creating layer, freeze, layer on/off colour assigning, current layer, load line type, lock & unlock layer, move from one layer to other.
- 5. Practice on Hatching, Hatch pattern selection.
- 6. Practice on Dimensioning, linear dimensioning, angular dimensioning radius/.diameter dimensioning O-snap command, aligned dimensioning, editing of dimensioning, tolerances in dimensioning.
- 7. Practice on print/plot commands. Export/import commands.
- 8. Practice on making complete drawings of components by doing following exercises:
 - a) Detail and assembly drawing of the following using AUTOCAD (2D) (4 sheets)
 - Plummer Block
 - Wall Bracket
 - Stepped pulley, V-belt pulley
 - Flanged coupling
 - Machine tool Holder (Three views)
 - Screw jack or knuckle joint
 - b) Isometric Drawing by CAD using Auto CAD (one sheet)

Drawings of following on computer:

- Cone
- Cylinder
- Isometric view of objects
- 9. Modelling (02 sheets)

3D modelling, Transformations, scaling, rotation, translation

- 10. Creating Chamfer and Fillet Practice on surface modeling, create part file, practice on assembly of parts, creating assembly view, orthographic views, section view (Practice on different views, practice on data transfer)
- 11. Introduction to Other Softwares;

(Pro Engineer/CATIA / Inventor/Unigraphics/Solid Work: Salient features.

INSTRUCTIONAL STRATEGY

- 1. Teachers should show model or realia of the component/part whose drawing is to be made.
- 2. Emphasis should be given on cleanliness, dimensioning, & layout of sheet.
- 3. Teachers should ensure use of IS codes related to drawing.

RECOMMENDED BOOKS

- 1. Engineering Drawing with AutoCAD 2000 by T. Jeyapooran; Vikas Publishing House, Delhi.
- 2. AutoCAD for Engineering Drawing Made Easy by P. Nageswara Rao; Tata McGraw Hill, New Delhi.
- 3. AutoCAD 2000 for you by Umesh Shettigar and Abdul Khader; Janatha Publishers, Udupi.
- 4. Auto CAD 2000 by Ajit Singh, TMH, New Delhi.

INDUSTRIAL TRAINING OF STUDENTS

(During summer vacation after IV Semester)

It is needless to emphasize further the importance of Industrial Training of students during their 3 years of studies at Polytechnics. It is industrial training, which provides an opportunity to students to experience the environment and culture of industrial production units and commercial activities undertaken in field organizations. It prepares student for their future role as diploma engineers in the world of work and enables them to integrate theory with practice. Polytechnics have been arranging industrial training of students of various durations to meet the above objectives.

This document includes guided and supervised industrial training of a minimum of 4 weeks duration to be organised during the semester break starting after second year i.e. after IV Semester examinations. The concerned HODs along with other teachers will guide and help students in arranging appropriate training places relevant to their specific branch. It is suggested that a training schedule may be drawn for each student before starting of the training in consultation with the training providers. Students should also be briefed in advance about the organizational setup, product range, manufacturing process, important machines and materials used in the training organization.

Equally important with the guidance is supervision of students training in the industry/organization by the teachers. A minimum of one visit per week by the teacher is recommended. Students should be encouraged to write daily report in their diary to enable them to write final report and its presentation later on.

An internal assessment of 50 and external assessment of 50 marks have been provided in the study and evaluation scheme of V Semester. Evaluation of professional industrial training report through viva-voce/presentation aims at assessing students understanding of materials, industrial process, practices in industry/field organization and their ability to engage in activities related to problem solving in industrial setup as well as understanding of application of knowledge and skills learnt in real life situations. The formative and summative evaluation may comprise of weightage to performance in testing, general behaviour, quality of report and presentation during viva-voce examination. It is recommended that such evaluations may be carried out by a team comprising of concerned HOD, teachers and representative from industry.